High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2
نویسندگان
چکیده
The ultimate limitations on carrier mobilities in metal dichalcogenides, and the dynamics associated with carrier relaxation, are unclear. We present measurements of the frequency-dependent conductivity of multilayer dichalcogenide MoS2 by optical-pump terahertz-probe spectroscopy. We find mobilities in this material approaching 4200 cm2 V−1 s−1 at low temperatures. The temperature dependence of scattering indicates that the mobility, an order of magnitude larger than previously reported for MoS2, is intrinsically limited by acoustic phonon scattering at THz frequencies. Our measurements of carrier relaxation reveal picosecond cooling times followed by recombination lasting tens of nanoseconds and dominated by Auger scattering into defects. Our results provide a useful context in which to understand and evaluate the performance of MoS2-based electronic and optoelectronic devices.
منابع مشابه
Ultrahigh, Ultrafast, and Self‐Powered Visible‐Near‐Infrared Optical Position‐Sensitive Detector Based on a CVD‐Prepared Vertically Standing Few‐Layer MoS2/Si Heterojunction
MoS2, as a typical transition metal dichalcogenide, has attracted great interest because of its distinctive electronic, optical, and catalytic properties. However, its advantages of strong light absorption and fast intralayer mobility cannot be well developed in the usual reported monolayer/few-layer structures, which make the performances of MoS2-based devices undesirable. Here, large-area, hi...
متن کاملIntrinsic electronic transport properties of high-quality monolayer and bilayer MoS2.
We report electronic transport measurements of devices based on monolayers and bilayers of the transition-metal dichalcogenide MoS2. Through a combination of in situ vacuum annealing and electrostatic gating we obtained ohmic contact to the MoS2 down to 4 K at high carrier densities. At lower carrier densities, low-temperature four probe transport measurements show a metal-insulator transition ...
متن کاملElectric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide
The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN...
متن کاملSurface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS₂.
We present results on photoexcited carrier lifetimes in few-layer transition metal dichalcogenide MoS2 using nondegenerate ultrafast optical pump-probe technique. Our results show a sharp increase of the carrier lifetimes with the number of layers in the sample. Carrier lifetimes increase from few tens of picoseconds in monolayer samples to more than a nanosecond in 10-layer samples. The invers...
متن کاملElectron dynamics in MoS2-graphite heterostructures.
The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The...
متن کامل